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Abstract

Venous gas emboli (VGE) (gas bubbles in venous blood) are associated with an increased risk of

decompression sickness (DCS) in hypobaric environments. A high grade of VGE can be a precursor to
serious DCS. In this paper, we model time to Grade IV VGE considering a subset of individuals assumed

to be immune from experiencing VGE. Our data contain monitoring test results from subjects undergoing

up to 13 denitrogenation test procedures prior to exposure to a hypobafi_c environment: The onset time o_f
Grade IV VGE is recorded as contained within certain time intervals. We fit a parametric (lognormal)

mixture survival model to the interval- and right-censored data to account for the possibility of a subset of

cured individuals who are immune to the event. Our model contains random subject effects to account

for correlations between repeated measurements on a single individual. Model assessments and cross-
validation indicate that this limited failure population mixture model is an improvement over a model that

does not account for the potential of a fraction of cured individuals. We also evaluated some alternative

mixture models. Predictions from the besi fittedmixture model indicate that the actual process is

reasonably approximated by a limited failure population model.
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1. Introduction

Humans exposed to hypobaric environments, such as astronauts performing an extravehicular activity
(EVA), typically experience the formation of gas bubbles in venous blood as a result of decompression.

The reduction in pressure from the space shuttle or a space station to a pressurized space suit can cause

nitrogen gas, which is normally dissolved in body fluids and tissue, to escape from solution too rapidly,

resulting in the formation of bubbles in tissue and blood. The movement of gas bubbles into venous blood
is called venous gas emboli (VGE). In most cases, the lungs filter out the bubbles prior to any danger of

their being passed to arterial blood, where they may block the pulmonary artery or lodge in the brain. In
some cases, however, especially those cases where an individual has a patent foramen ovale (PFO), there

is the chance of bubbles traversing to arterial blood. Briefly, a PFO is an opening in the heart between the

right and left arterial chambers that allows the passage of bubbles into arterial circulation and critical

tissues. The presence of these circulating gas bubbles in the blood stream could contribute to serious

hypobaric decompression sickness (DCS). For a further description of the process, see Bove (1998).

Types of DCS are distinguished by seriousness. The symptoms of Type I DCS are milder and include

joint pain, or the bends, in the el bows, knees, or shoulders. The symptoms of Type II DCS ( serious
DCS) are neurological (e.g., memory loss, unconsciousness, stroke), cardiac, or pulmonary (e.g., deep

chest pain caused by bubbles blocking the pulmonary artery); Type II DCS can be fatal if it is not treated

immediately. This is particularly problematic for astronauts performing an EVA because of the lack of

quick rescue capability. To reduce the risk of the occurrence of VGE, astronauts typically breathe 100%
oxygen prior to EVAs. Prebreathing oxygen helps to eliminate nitrogen from tissues, and reduces the

number of circulating bubbles while at altitude and during the EVA.

Prebreathe procedures are evaluated in altitude chambers prior to their use on spaceflight missions by

tests that produce low-pressure conditions. In these tests, the existence of VGE is typically monitored

using Doppler detection, and the extent of bubble signals is measured in grades using the Spencer scale
(Spencer, 1976). Spencer scale grades range from Grade 0 (i.e., the absence of bubble signals in cardiac

cycles to Grade IV (i.e., bubble signals are detected continuously throughout the monitoring period,

overriding the amplitude of cardiac motion and blood flow signals ). The lower the grade in the scale,
the lower the apparent number of bubbles. Conkin et al. (! 998) describe the connection between VGE
and DCS in more detail.

The effectiveness of each prebreathe procedure can be measured by the percentage of cases of high

bubble grade (Grade IV or above) produced in simulated low-pressure conditions (e.g., in an altitude
chamber). Grade IV bubbles are of concern because they are associated with an increased risk of Type II

DCS, especially for individuals with a PFO. So, the choice of a particular denitrogenation procedure for

use prior to an EVA will depend on the effectiveness of the procedure in avoiding Grade IV bubbles
and, thus, potentially serious DCS.

Previous research on statistical modeling of the time to onset of DCS in high-altitude conditions has dealt

with right-censored data and a single parametric form of the survival distribution for the entire population
under study. The nature of DCS onset is such that risk rises with time, reaches a maximum, then declines

(Conkin et al., 1996). As such, a commonly used hazard model for time to onset of DCS is the log-logistic

or log-normal hazard functions. Conkin et al. (1996) used a log-logistic model for the time to onset of
DCS symptoms, with covariates related to tissue ratio (a measure of nitrogen decompression stress) and
exercise at altitude. The authors also described survival models for modeling the onset of VGE detection

from Doppler ultrasound. Kumar and Powell (1994) modeled log time to onset of DCS as a parametric
function of the explanatory variables, tissue ratio, and presence of circulating microbubbles in venous

blood. Kannan and Raychaudhuri (1998) fit both parametric (log-logistic) and semi-parametric (Cox)
models to DCS data from individuals in hypobaric chamber tests. For each individual, the se authors



consideredthetimeto onsetof DCSsymptomsaswellasseveralexplanatoryvariablessuchasexercise
ataltitude,amountof timespentprebreathingoxygenpriortoexposure,maximumbubblegradeusingthe
Spencerscale,andpressureataltitude.In addition,Kotietal. (1998)usedtog-logisticandlog-normal
modelsformodelingtimeto onsetof DCS,usingheavilyright-censoreddatafromtheNASAhypobaric
decompressionsicknessdatabank(HDSD).Chhikaraet al.(2000)laterusedCoxsproportionalhazards
modelonthesamedataset.

Limited Failure Population Models
.... v

Conkin et al. (1996) suggested that under certain circumstances, there are some individuals who will

never get Grade IV VGE no matter how long they remain at high altitude. Thus, it may not be ideal to use

an ordinary survival model for modeling the time to onset of DCS or its related causes. Limited failure
population (LFP) models in survival analysis have often been applied in the biostatistical and medical
literature where it is known or assumed that some fraction of the population (the cured fraction) will

never experience the event under study. Malier and Zhou (1996) provide a complete history of these
models.

The application of a survival model for an LFP typically involves a mixture model, which can be a
standard mixture of several different models or a nonstandard mixture model where one component is

degenerate. For example, in clinical settings where the endpoint under study is death due to disease, the
survival function can be expressed as a mixture model with different component survival distributions for

death due to different Causes, including the one under study, as well as normal mortality. The resulting
model is a standard finite mixture model in which mixture components may or may not depend on

covariates, and the survival distributions for each competing risk may or may not be completely

parametric. Examples of this type of LFP mixture model appear in Gordon (1990), Kuk and
Chen (1992), and Larson and Dinse (1985).

In situations where the endpoint under study occurs by only one known means (e.g., paralysis due to

excess radiation or onset of hypoxia due to low atmospheric pressure) or where competing causes of the
endpoint are not observable ie_g_' relapse of cancer caused by overgrowth of any number of cancer cells),

the resulting mixture representation of cured and non -curedindividuals becomes degenerate in the

cured component. That is, the survival distribution becomes degenerate at I for cured individuals, with
infinite failure times. The mixture model originally proposed by Berkson and Gage (1952) models the

population survival function as a mixture of a standard survival distribution and a degenerate survival
function with point mass at l, Thus, the survivor function for the entire population is

Sp,p(t) =rt S(t) + 1-Tt (1.])

where S(t) is the survivor function for individuals who will experience the event, and rt represents the

probability of eventually experiencing the event, given enough time. A nice feature of model ( I. 1) is that

because S(_)= 0, as for an ordinary survival distribution, Sp,,p(oo) = 1-rt, so that I -rt denotes the

cure rate of the population.

Examples of (I. I) as an LFP mixture modcl are found in Berkson and Gage (1952), Farewell (1982),

and Taylor (1995). Farewell (1982) describes a logistic-Weibull mixture applied to fish toxicology data,
where the Weibull model is used for the survival distribution and a logistic model is used for the cure

probability. Taylor (! 995) and Kuk and Chen (1992) describe semi-parametric versions of this model
using, respectively, a Kaplan-Meier estimator for the survival distribution and a proportional hazards

structure with an unspecified baseline hazard function.



Althoughtheformof model(1.!) issimple,it canbeattractiveincertaincircumstances,suchas
clusteringof observationsandthepresenceof intervalcensoring.Becauseof itssimplicity,theuseof
model(1.1)withaparametricsurvivaldistributioncanmakebothestimationandassessmentofgoodness-
of-fit andpredictivevalidationeasier.Model(1.1)isalsoeasyto interpret,anditsmixturestructuremay
alreadybefamiliarto researchers.Thus,it servesasanicestartfromwhichamoreflexiblemodelcan
beconstructed.Theaimof ourpaperis toapplythisrelativelysimplemodeltoadatasetwith interval-
andright-censoredmeasurements,withtheadditionof randomeffectstohandleclusteringof
observations.

Wefit anLFPmodelforpredictingthetimetoonsetof GradeIV venousgasbubbles.Toachievethis,we
useaNASAdatabankconsistingof test results from volunteer subjects undergoing monitoring for VGE

under hypobaric conditions. All of the observations were either interval- or right-censored, and some of
the individuals tested performed more than one test, thereby providing multiple records in the dataset.

Measurements on certain explanatory variables known to be associated with DCS were also recorded

for each subject.

Since we assume a priori that individuals who are immune to Grade IV bubbles are present in the

population under study and also in the dataset at hand, there will be no formal test for the presence of
immunes. We base our decision on examination of the physiological circumstances surrounding DCS, and
on the fact that our dataset may not have sufficient follow-up to be able to test formally for the presence

of immunes. Mailer and Zhou (1996) discuss formal testing and its limitations.

The remainder of this paper proceeds as follows. Section 2 gives a description of the data, testing

procedure, and explanatory variables measured. Section 3 explores nonparametric survival distributions.
Sections 4 and 5 describe the model fitting. Section 6 provides an assessment of goodness of fit. Section 7

discusses predictive validation. Section 8 addresses predictions for the fitted models. And, Sections 9 and
10 include discussion and extensions.

2. Description of the Data and Testing Procedure

NASA s HDSD (Conkin et al., 1992) contains monitoring test results from human volunteer subjects

undergoing denitrogenation test procedures prior to exposure to low pressure. The exposure records are
from 453 males and 96 females who participated in a total of 28 different test procedures from 1983 to
1998. However, because some subjects participated in more than one test procedure, the number of

individuals tested was 238 (of which 177 were male). Each test involved one decompression, and is

described generally in the next subsection. The highest number of test results contributed by a single
individual was 13. The median number of test results was two. The recorded data did not provide
information on the order in which the tests were taken.

2.1 Testing Sessions and Recorded Data

Each testing session was scheduled to last anywhere between two and six hours; the median was three

hours. Subjects were tested in groups of one or more individuals. A subject s group designation was not
included in the recorded data, although multiple records by a single subject were indicated. There were
two major phases during a typical testing session. In the first phase, the subject prebreathed 100% oxygen

at site pressure while sitting. In the second phase, the subject was brought to altitude where he/she was

monitored for Doppler-detectable bubbles. During this second phase, the subject performed a variety of

repetitive exercises, mostly while standing. He or she also walked to as many as three exercise stations
and to a bubble monitoring station. Bubble monitoring was scheduled to begin at approximately every 16

minutes while a group of subjects was at altitude. However, according to the data, monitoring sometimes



beganafterintervalsof overahalfhour.Eachmonitoringsessionwasscheduledtolastfor fourminutes,
wherethesubjectflexedthelimbsinsequencetoimprovebubbledetection.

If GradeIV bubblesweredetectedwithinamonitoringinterval,therecordeddatumforthesubject
wastheintervalbetweentheendof thelastmonitoringperiodandthebeginningof theintervalinwhich
GradeIV bubblesweredetected,nomatterthepointin themonitoringintervalinwhichGradeIV bubbles
weredetected.Thus,thesecaseswereinterval-censored.If GradeIV bubbleswerenotdetectedduringthe
entiretestsession,therecordedonsettimewasright-censoredattheendof thesession.Theseright-
censoredobservationswereconsideredtobeTypeI right-censored(Lawless,1982).If thetestwas
stoppedforanyreasonpriorto theendof thesession,theobservationwasright-censoredatthattime.
Observations,whichcorrespondedto testsstoppedpriorto theprescheduledtimeataltitude,were
consideredrandomly right-censored. A test was never stopped during a monitoring interval.

Of the 549 records, 124 were interval-censored (i.e., Grade 1V bubbles were detected), leaving over 75%,

of the cases Type I right-censored and 2% random right-censored. Due to equipment failure, the interval
for one observation lasted about 104 minutes. This observation was discarded, leaving 548 records from
the 238 individuals tested.

2.2 Explanatory Variables

Explanatory variables included experimental variables and physical characteristics of the subjects. The

variables and their summary statistics are given in Table 1. The importance of these variables in DCS is
well-documented (Carturan et al., 1999; Conkin and Powell, 2001, Sulalman et al., 1997; Webb et al.,

1999). The first variable (TR360), a measure of decompression stress, is the ratio of the partial pressure of

nitrogen at altitude to ambient pressure prior to ascent. A theoretical compartment with a half-time of 360

minutes was used to model nitrogen elimination and obtain the value of the explanatory variable, TR360
(see Conkin et al., 1996, for information on the development of TR360 and its recording in the HDSD).

The greater this ratio is above 1.0, the more quickly we would expect to detect high bubble grades. The
variable NOADYN indicated whether the test subject was ambulatory (NOADYN = 1) or lower body

adynamic (NOADYN = 0) during the session. The variable SEX was coded male = 1 and female = 0.
The mean of SEX shown in Table 1 is slightly misleading because although 83% of the 548 test

records were contributed by males, only 74.4% of the 238 individuals were male.

Table 1: Explanatory Variables Measured on Each Case

TR360 SEX AGE NOADYN

Minimum:
Mean:

Median:

Maximum:

SD:

0.94 0.00 20.00 0.00
1.57 0.83 31.85 0.85

1.68 1.00 30.00 1.00

1.89 1.00 54.00 1.00

0.26 0.38 7.17 0.36

In what follows, we will refer to the entire dataset of interval- and right-censored observations, along with

measured explanatory variables as the Grade IV VGE data.

2.3 Data Characteristics

To provide initia I insight into the characteristics of the data and to facilitate further discussion,
we constructed several cross-tabulations of explanatory variables by proportion of Grade IV VGE



occurrence.TR360wascategorizedintoquintiles,andAGEwascategorizedintogroups:19 +30,
30 +40,40 +60.ThecategoriesforAGEwerechosentodividetheagegroupintoyounger,middle,
andolderagecategories.Threecategorieswerechosentohaveenoughdatafall intoeachcategory.Table
2ashowstheproportionsforTR360andNOADYNstatus,Table2bshowstheproportionsforSEXand
NOADYNstatus,andTables2cand2dshowtheproportionsforSEXbyAGE,andNOADYNstatusby
AGE,respectively.No formalhypothesesweretestedusingthetabulations.

Notsurprisingly,theproportionof GradeIV casesin thedatasetincreaseswithhighercategoriesof
TR360.AccordingtoTable2a,however,whenthesampleiscategorizedbyNOADYNstatus,thereisan
increasingincidenceof GradeIV VGEbyTR360for ambulatorysubjects,buttheredoesnotappeartobe
asimilartrendfor theadynamicsubjects.Notice,too,thattheproportionof GradeIV casesfor Adynamic
subjectsishigherthantheproportionforAmbulatorysubjectsin theTR360range[0.94,1.35).Forall
otherTR360 categories, the proportion for Ambulatory subjects is higher than for Adynamic subjects.

This may be indicative of a slight interaction between TR360 and NOADYN in their influence on
Grade IV occurrence. However, some of the sample sizes in the Adynamic categories may be too

small to provide reliable proportions of Grade IV VGE.

Table 2a: Cross-Tabulation of TR360, NOADYN, and Grade IV VGE

TR360"

0.94+ 1.35 1.35+ 1.68 1.68+ 1.77 1.77+ 1.89

NOADYN=0 (Adynamic)

No GIV VGE 16/19 = 0.84 14/14 = 1.0 ] 22/23 = 0.96 24/28 = 0.86
GIV VGE 3/19 = 0.16 0/14 = 0.0 I 1/23 = 0.04 ... 4/28 = 0.14

NOADYN= 1 (Ambulalory)
No GIV VGE 107/113 = 0.95 91/124 = 0.73 I 126/191 = 0.66 13/24 = 0.54

GIV VGE 6]! 13 = 0.05 33/124 = 0.27 ] 65/191 = 0.34 11/24 = 0.46
*Thecolumn TR360 _<0.94 was not includedbecause only 12observaiions hadTR360 in this range, with no cases

of Grade IV (GIV) VGE.

Table 2b shows that the incidence of Grade IV VGE is higher among Ambulatory than Adynamic

subjects, and this direction does not change with sex. Males have a higher percentage of Grade IV VGE
cases than females have.

Table 2b: Cross-Tabulation of NOADYN, SEX, and Grade IV VGE

NOADYN

Adynamic Ambulatory

No GIV VGE 25/27 = 0.93
GIV VGE 2/27 0.07

No GIV VGE 51/57 = 0.90
GIV VGE 6/57 = 0.10

Female

Male

61/69 = 0.88
8/69 = 0.12

288/395 = 0.73
107/395 = 0.27



Table 2c shows that the proportion of Grade IV VGE cases increases with AGE group regardless of sex

with the exception of the incidence for females over age 40. This exception might also be considered as

evidence of a slight interaction between SEX and AGE, although the sample size in this category may
be too small for the interaction to be reliable.

Table 2c: Cross-Tabulation of SEX, AGE, and Grade IV VGE

No GIV VGE

GIV VGE

AGE

19+ 30 30+ 40 40+ 60

SEX=0 (Female)

34/35 = 0.97 39/47 = 0.83 13/14 = 0.93

1/35 = 0.03 8/47 = 0.17 !/14 = 0.07

54/260 = 0.21 35/124 = 0.28 24/68 = 0.35

SEX=I (Male)
No GIV VGE 206/260 = 0.79 89/124 = 0.72 44/68 = 0.65

GIV VGE

Finally, Table 2d tabulates Grade IV incidence by AGE and NOADYN status. As before, we see an

increasing incidence of Grade IV VGE with AGE and with ambulatory individuals. However, this table

also shows that the difference in Grade IV incidence across NOADYN status (Adynamic vs. Ambulatory)

remains roughly constant across AGE.

Table 2d: Cross-Tabulation of NOADYN, AGE, and Grade IV VGE

AGE

19+ 30 30+ 40 40+ 60

NOADYN=0 (Adynamic)
No GIV VGE 33/34= 0.97 27/31 = 0.87

GIV VGE 1/34= 0.03 4/31 = 0.13

No GIV VGE

GIV VGE

NOADyN= !. ,(Ambulatory)
207/261 = 0.79 101/140 = 0.72

I6/19 = 0.84

3/19 = 0.16

41/63 = 0.65

54/261 = 0.21 39/140 = 0.28 22/63 = 0.35

Overall, the cross-tabulations show general trends of the importance of TR360, SEX, NOADYN

status, and AGE on the incidence of Grade IV VGE. Also, there appears to be some evidence of possible

interactions among variables as the variables are categorized in the tables.

In the following sections, we will explore the influence of the explanatory variables on the time to

onset of Grade W VGE. For exploratory purposes, we will next describe a nonparametric estimator of the

survival curve.



3. Turnball Estimates of Survival Curves

A nonparametric method for estimating S( t ), the probability of survival beyond a given time, t, is due
to Tumball (1976). Tumball s method generalizes the Kaplan-Meier estimate of survival probabilities to

interval-censored data and provides a nonparametric maximum likelihood estimate (MLE) of S( t )

computed using an Expectation-Maximization algorithm, as we briefly describe next.

Consider each interval endpoint to be a recorded time, say '_j, and form new intervals based on the

ordered recorded times, 0 = "co< 1:_< < %. Consider the ith individual who experiences an event within

the interval (L, R,]. For every interval of recorded time, ('_j._, 'cj], that falls within the censored interval (Li,

Ri], set (x,j = 1. Given an initial estimate of S(xj ),j = 1,, m, the algorithm iterates between estimating pj

= S(zj._) - S('tj ), the probability of the event occurring within the interval, (xj-1, "cjl, and estimating S('I:_),

using a Kaplan-Meier estimate involving the pseudo-number of events, dj, occurring at time "t_,where

11

dj : Z(o_Op j/Z_o_i_p_ ). Convergence of the algorithm to stable estimates P l then yields the
i=1

nonparametric MLE of S( t ).

However, the nonparametric MLE found by the algorithm is not necessarily unique (Tumball, 1976).
Gentleman and Geyer (1994) point out that the maximization is a concave programming problem with
linear constraints on the sum of the nonnegative pj. A sufficient condition for the uniqueness of the MLE

computed using this algorithm is the negative definiteness of the Hessian matrix of the log likelihood as a

function of the pj. The Hessian matrix is negative definite if the i1 × m matrix, A, of the elements o_j is

full column rank. We refer you to Gentleman and Geyer (1994) for further details.

The Tumball estimate of F( t ) = I - S( t ), the probability of experiencing the event by time, t, was

computed for the Grade IV VGE data togethre with 95% simultaneous confidence bands. The MLE of F
was determined to be unique if we use the method of Gentleman and Geyer. The confidence bands were

computed on the Iogit-transformed F(t), then back-transformed to get an interval on F(t) itself (Meeker
and Escobar, 1998). The formulas used for the lower and upper confidence limits were programmed in

S-PLUS 2000 and Mathematica 4.0. Figure 1 shows the resulting estimate with 95% simultaneous
confidence bands.

The presence of a cured fraction of individuals in a population may be manifested in the data through

a plateau in an estimate of the survival curve, such as in a Kaplan-Meier or Tumball survival estimate.
Figure 1 shows evidence of a plateau of approximately 0.25, beginning at about five hours. Thus, if the
cured fraction in the dataset were actually 0.75, the Tumball estimate as shown in Figure 1 would plateau

at around 0.25. However, a plateau can also occur if there is insufficient follow-up in the study, resulting

in many right-censored observations. Mailer and Zhou (1996) give further details and references.
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Figure 1. Turnball estimate of probability of Grade IV VGE by
time (hours), along with 95% simultaneous confidence bands.

We also stratified the data by sex as well as by NOADYN slatus (LBA = lower body adynamia) before

we computed the Turnball estimate of the probability of Grade IV bubbles. Figure 2 shows the estimates

of probability, excluding 95% confidence intervals for clarity. It is important to note that although the

strata have different sample sizes, the graphical estimates still give some idea of what to expect from

predictions of a parametric model. Figure 2a shows that males may have a higher probability of Grade IV

bubbles over females, although the curve for females is based on only 96 out of 548 records. Figure 2b

shows that individuals with movement in the lower body (i.e., ambulatory) have a higher probability

of Grade IV bubbles at most times; again, the curve for LBA is based on only 84 records.
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Figures 3a and 3b stratify the data by quintiles of TR360 and the AGE categories used in Table 2d, and
show the Turnball estimate for each stratum. The lowest category was not included for TR360 because

there were no instances of Grade IV VGE. Both figures show that onset time decreases with age and

with TR360.
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4. Model Fitting and Selection

4.1LognormalModelfor Non-curedPopulation

A common way to deal with interval-censored observations when fitting parametric models is to
use maximum likelihood estimation, where the likelihood contribution (or an observation known to fall

within the interval (t0 , tt 1 is ; _' f(u; 0 )du, wheref is the density corresponding to the parametric,o

distribution function F, which depends on 0. For Grade IV VGE data, the chosen parametric form for
the survival distribution for the non-cured individuals was Iognormal because the form of its hazard

function is consistent with the hypothesized potential for experienchg Grade IV bubbles. That is, the
lognormat hazard function is zero at time zero, increases to a maximum, then decreases to zero as time

goes to infinity. The potential for Grade IV VGE for individuals in hypobaric conditions is purported to
follow this trend. Other parametric forms such as the Weibull and log-logistic were also tried, but the

fit of these parametric forms was worse than for the lognormal. Thus, the log time to onset of Grade 1V

bubbles is assumed to be normally distributed with a mean that is a linear combination of several

covariates, and a constant scale parameter. The survival function is

S(tl_,_,x)=l-_II°g(t_-_(x) 1
(4.1)

where

is the cumulative distribution function for the standard normal distribution
P

la(x) = 13,,+ _,.__ff_
/_=1

is the st_mdard deviation of log(O, and

.re k = 1,, p are values ofp explanatory variables

An initial model included all the variables listed in Table l as covariates. For computational purposes,

the variables AGE and TR360 were standardized. The standardized versions are subsequently denoted

as S.AGE and S.TR360, respectively, where S.AGE = (AGE - 31.85)/7. !7, and S.TR360 = (TR360 -
1.57)/.263 (Table 1 contains the means and standard deviations used for standardization.) The covariates

were all included in linear form. Some investigation into nonlinear forms yielded no reason to suspect

nonlinear effects of the covariates on the response variable, in addition, pairwise scatterplots between

pairs of covariates did not reveal any noticeable relationships.

4.2 Modeling Multiple Observations Per Subject

Some observations originated from the same individual undergoing different tests. That is, some groups

of observations represent repeated observations within the same subject, and these observations are

correlated. Although analyzing the data as though the observations were independent can be misleading
with respect to the precision of the parameteres_t!mates. There are several ways to deal with dependent
observations. Statistical methods for handling dependent observations might broadly be categorized in

one of two ways: (1) either dependency is accounted for in the statistical model, or (2) an adjustment is
made to the variability estimates obtained from a model that assumes independent observations. We

chose a relatively simple, but typical, method of the first way for modeling the correlation between

pairs of observations from the same individual.

.1
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Random Effects Model for Dependent Observations

A random effects model handles repeated measurements by incorporating random subject effects into

the linear form representing the conditional mean of the log time to the event. The conditional mean for

the jth log event time for the ith subject is modeled as

E(Iog t,j [h, ,x) = ILt0 (x) = [3,,+ _-v_,j _k +b,
k=l

(4.2)

In this representation, bi is the random effect for subject i, distributed normally with mean zero and

constant variance c_. Note that the observations made on the same subject share the same random effect.

Also, the h i are assumed to be independent of one another. Using (4.2), the model representation for log

t,j is

log tij = p_j (x) + _:,:/ (4.3)

In (4.3), Eq represents a mean-zero, normally distributed error term with variance (y 2, and independent of

hi . The unconditional variance of logt o is thus _ 2 +¢y_, so the correlation between any pair of log times

for a given subject is corr(logtij,logto.)= (_,/_2 +_,) = 9, independent of i andj.

A random effects model also allows for heterogeneity in log times across subjects. As such, it can
p

2

capture variability not modeled already in the linear combination, [3,,+ _xh,j[3_ . A large value of 6_,,
k=l

the variance of random subject effects, relative to c 2, the variance due to all other factors besides subject

effects, may indicate relatively high variability among observations made between individuals or could

indicate a proportionately large amount of unmodeled covariates.

4.3 Estimation of the Parameters from a Random Effects Model

Model (4.3) has p + 3 parameters: (9 = (_,,, [3v),6j,, c). In a classical statistics context, the number

of parameters for this model will always be p + 3 irrespective of the number of subjects tested. Although
the random effects, hi, may behave like parameters, technically these random effects are just another level
of random variation in the model. So, we do not estimate them as we would the other p + 3 parameters.

However, their distribution must be considered in the likelihood function describing the random process

that is assumed to have generated the data. If we denote the likelihood conditional on b = (h, ..... h,,) by

L( _ ,(_ ,_h ,b = (h_..... b,, )), then MLEs of (_, (y_,,(_) are obtained by maximizing, with respect to _, ¢::yh,

o), the likelihood integrated over the distribution of the random effects, b

L([3,c_,db)= _ L(_ ,¢_,b )N(b _,,) db= _HL(_ ,¢y,b, )N (bilOb)db
i

(4.4)

where N(b [o.) is the zero-mean Gaussian probability density function with standard deviation, (y;,,

evaluated at bi . However, the integration in (4.4) is not always tractable. In this case, other options are

available for getting MLEs. Computational methods for standard errors of the estimates depend on the
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optionchosen.In ourcase,numericalintegrationisaviableoptionbecauseweintegratewithrespectto
univariatevariables.Thatis,theright-mostsideof (4.4)canbewrittenas

L(_,O,Ob) = H_ L([J ,_ d_,)N(b, [o h) dbi
I

(4.5)

Equation (4.5) is then maximized with respect to the parameters of interest. Gauss-Hermite quadrature

can be used to do the inte_ations (Naylor and Smith, 1982).

Another alternative for obtaining generalized MLEs is via Bayesian estimation with diffuse priors on the

unknown parameters. With the complicated likelihood functions, Markov Chain Monte Carlo (MCMC)
sampling makes estimation easier than other methods. In this type of sampling, repeated draws from the

joint posterior distribution follow a first-order Markov chain. The joint p0_teri0r d!stributionofth9

parameters is proportional to the likelihood function times the joint prior distribution on the parameters.

Estimates of expectations with respect to the posterior distribution can be obtained as Monte Carlo
estimates using samples from the chain. For symmetric, unimodal distributions, first-order expectations
(if they exist) coincide with strict MLEs. So, when histograms of the samples from the chain look

unimodal and symmetric, the sample average is fairly close to what would be the MLE had we used

traditional maximum likelihood estimation procedures (for example, Gilks et al., 1996).

An advantage of MCMC sampling with random effects models is that the random effects can be sampled

from their conditional distribution (given the data and current parameter samples) and implicitly averaged

over. This avoids direct integration required to get the integrated likelifiood.

We combined the two approaches to estimate parameters. First, we set independent diffuse priors on

the parameters in ([3, _,, cy), and then used MCMC sampling to obtain approximate generalized MLEs
by taking the sample averages from the MCMC'output Chai-ns. All univariate iaistograms of the MCMC:

samples of single parameters were r0ugh!y__symmetrical. We then used approximate generaljzed=_Es as
starting values in a quasi-Newton Rapheson algorlihm to maximize integrated ]i_i|ho_. The in-tfgfat[on _

was performed using Gauss-Hermite numerical integration. The reason for combining the two methods

instead of using the MCMC sampling alone was that the MCMC sampling (as described) included the

specification of a joint prior distribution. Although the joint prior was specified to be diffuse and, thus
arguably, close to noninformative with respect to the likelihood, we note that this analysis is not strictly
a Bayesian analysis. A prior distribution has no meaning in our estimation, and is used together with

MCMC sampling to get starting values only. There are certainly methods for using MCMC sampling

in frequentist contexts (e.g., Gilks et al., 1996), including the use of a truly noninformative joint prior.
However, none of these procedures (that we tried) was as practical to implement computationally as the

above combined approaqhes. Furthermore, all of the methods we did try converged to simi!ar estimates.

More details of the estimation are presented later. We will now describe an extension of the initial

lognormal model to handle a cured fraction.

5. An LFP Model for Time to Onset of Grade IV VGE

An LFP Model is a mixture model for survival data consisting of two groups: (!) individuals who

will eventually experience the event, and (2) individuals who will never experience the event, sometimes

called immune individuals. The probability that a randomly selected individual will never experience

the event in question is sometimes referred to in the literature as the cure rate. The cure rate may or

may not depend on explanatory variables. There are numerous references of the application of these

_=
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modelsinsurvivalandreliabilityanalysisin theliterature(e.g.,MailerandZhou,1996;Meekerand
Escobar,1998).

Forourpopulation,thecurerateis theprobabilityof neverexperiencingGradeIV bubbles.We
assumethatthecureratedependsonexplanatoryvariablesmeasuredoneachindividual.Thismeans
thatforagivenindividual,theprobabilityof experiencingGradeIV bubblesisafunctionof physical
characteristicsof theindividualmeasuredpriorto thetestsession.Fortheobserveddata,thecurerateis
zerofor individualswhounderwentteststhathadinterval-censoredrecordedtimes,andit isnonnegative
otherwise.In thenextsubsection,wewill definethecurerateasafunctionof explanatoryvariables,and
givetheresultinglognormallikelihoodfor interval-andright-censoreddata.Later,wewill comparethe
LFPmodelto anon-mixtureiognormalmodel,wherebothmodelsarefittedusingrandomsubjects
effects.

5.1 Construction of the Limited Failure Population Model

For the jth observation from the ith individual, define the indicator variable as

-,. ={I 0 if the ith subject will eventually experience Grade lV VGE on theirjth test% otherwise

Although immunity to the event, Grade IV VGE, may be perceived as applying to individuals,
the indicator variable is defined for each obsela,ation within each individual. An individual will not

necessarily have a constant propensity for cure across repeated observations, as some covariate values

may change across measurements.

We make an assumption in this paper that the z;j s are independent for all i and j, conditional on certain

modeled covariates as discussed in the next subsection. This assumption is valid provided that all relevant

covariates have been included in the model. Thus, we assume that dependence between any two z0 s

occurs only through shared covariate values.

If we assume that censoring times are independent of event times, and that observations from

different individuals are independent of one another, we can construct the likelihood as follows:

For an interval-censored observation with covariates, x,l, the contribution to the likelihood is

P(to,, < T,7 < tl,j , zij = I Ix,j) = P(zij = l[x,j )(S(to, j Ixij)- s(t_,, [xij)), for known left and right interval

endpoints t% and tl,,. Similarly, for a Type I right-censored observation, the contribution to the

likelihood is P(to,, < T,j, z 0 =11xo)+ P(t% < Tit, zij= 01xo)= P(zij = llx,j)S(to,j Ix0) + P(zij =()Ix,j) •

As noted for model ( I. 1), the survival distribution S is only defined for the non-cured population. The

survival distribution is always I for the cured population.

If G(t,[ x) represents the survival function for the randomly right-censored time,t, then

a randomly right-censored observation s contribution to the likelihood is

P(t% < Tij, z,:/= I Ix0 ) + P(t% < T_i, zij = ()lx_) = P(zij = IIx0 )G(t% Ix_j) + P(:0 = 0l x,j) . If the

random censoring distribution G does not involve parameters of interest related to the covariates, then

G(t Ix) = G(t). In this case, the contribution to the likelihood from a randomly censored observation

becomes P(z_j = IIx_ )G %,, )+ P(z_i = 0l xij). If the randomly right-censored observations can be treated

as Type I censored observations, these observations contribute the same term to the likelihood as given
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fortheTypeI censoredcases.Thissituationisdesirablebecauseit eliminatestheneedtospecifytheform
for G, with or without dependence on covariates.

Of the 425 right-censored observations, 11 cases were randomly right-censored. Because there were so
few randomly censored observations, we did not feel it was statistically beneficial to include an additional

term in the likelihood for only these 11 cases. Moreover, our exclusion of the randomly fight-censored

cases from parameter estimation procedures made little changes to the resulting estimates. So, we treat
the I 1 randomly right-censored cases as though they were Type I right-censored.

The contribution by right-censored observations reflects the mixture aspect of the model. A right-

censored observation would have a probability P(zo = 1l xi_) of ever experiencing the event, and a

probability P(zij = 01x0 ) of being immune to the event. The probability P(zij = 01x0) is the cure rate

mentioned above.

Define the censoring indicator 5o to be I if the/jth observation is interval-censored and zero otherwise.

Denote the observed data by D = {x_ ,to,,, tl,, ,_5,j; j = ! ..... m, ;i = 1..... n}, and denote a single data record by

D 0. The likelihood is then

L(13 ,_,_ b[D)= _'I f _'I Lo ([J 'CY"(Yt' [D_J'h' ) N( hi [0'Gb)db,
i=1 )=l

(5.1)

where

L,j(_ ,c,_ ,,ID,v,l_,) =

[e(_-,j: l Ix0)(s(,,,,,I,,,j,h,)-s(,,,,I",j_t,,.i))]_"[P(=,j= lIx,j)s(,,,,Ix,j,_)+P(-,j: 01x,j)]'-_

and, S(t I x = (x, ...... _e), b) = •
(y

We modeled the probability of an individual eventually experiencing Grade IV bubbles on a given test as

a logistic function of the explanatory variables,

P(zo=llx,j)=exp(_o+£c_-_3y_)/il+exp(_o+£_-_;Tk) (5.2)

where the _ are parameters relating the covariates to the cure rate.

With these forms for the cure rate and survival distribution, Lo ([3 ,cy,(_ _,[Do, hi) in equation (5.1)

becomes : i
Z

h
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Lij (_ ,(Y,(Yb lDo,bi) =

I__- _p • -0 log/g, - -

1+ exp(ot, + Z_ C¢_xijk) _ o

x -_- _'--_T_ 1-0

1+ exp(o% + Z_ =_.,;7_)[ o I + exp(cz o + Zk_= otkx0t )

(5.3)

We refer to the parameters, [3 = (13o, 131...... [3/,) as location parameters and to the parameters

cz = (c% ,cg ..... czp), in the cure rate, as mixture parameters. If the location parameters in (5.3) are all

distinct from the mixture parameters, the maximum number of distinct parameters in (5.3) is 2(p + I) + 1.

In many modeling situations, some of the mixture or location parameters are fixed at zero.

5.2 Estimation of the Parameters from the Random Effects Models

We now fit two LFP random effects model to the Grade IV VGE data and contrast their fit with that of a

non-mixture model, which is actually a special case of the LFP model, but with P(z o = 1) = 1for all i and

j. The models were fit using the structures given above, with the addition of a random effect added to the
conditional mean log time to onset for each individual. Estimation was done in two steps. First, we used

MCMC sampling to sample realizations of (13, _, G, o_, ,b) from their joint posterior distribution. The

WinBUGS software version 1.3 (Spiegelhaiter et al., 2000) was used for the computations. Independent

normal priors with mean 0 and variance 1,000 were chosen for the elements in ([3, _,logo,log o_,).

Results did not appear to be sensitive to the parametric form of the diffuse prior specification. For

example, using gamma distributions for the standard deviations instead of normal distributions for the lo g
standard deviations did not change the results. Three chains of 2,000 samples each were run per model,
each starting from different initial values. One set of initial values for the MCMC procedure came from

direct maximization using Newton-Raphson s algorithm, where observations were treated as independent.

(That is, random effects were ignored.) Basic convergence diagnostics, such as trace plots, and Brooks-
Gelman-Rubin Statistics (Brooks and Gelman, 1998) showed no evidence of lack of convergence of

the Markov chains to a target distribution. Univariate histograms of samples from the chains were all

roughly symmetrical, even for the standard deviation parameters.

Sample means from the combined three chains of output were used as starting values for a quasi-Newton-
Rapheson maximization of the integrated likelihood in (5. I). The integration was performed using Gauss-

Hermite quadrature, and was programmed in Mathematica 4.0. Thirty quadrature points were deemed
more than sufficient for the integration. Table 3 gives the approximate MLEs of the coefficients for three
models. The first is a non-mixture model, and the others are LFP mixture models. Approximate standard

errors in parentheses were obtained using the inverse of a finite difference approximation to the negative

of the Hessian of the log likelihood evaluated at the point estimates (Tanner, 1996, p. 74). No evidence

of the nonidentifiability of parameters was observed for an 5, of the models in Table 3. Asymptotic
correlation matrices for Table 3 are in Appendix A.
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Table 3. Approximate Maximum Likelihood Estimates for Fitted Models

-LogLH
AIC

Location Parameter
Estimates

13o

13,(SEX)
[3, (S.AGE)

133(S.TR360)

134(NOADYN)

(scale)

Mixture Parameter

Estimates

o_, (SEX)

o_2(S.AGE)

Random Effects Parameter
Estimates

(_b(sd of random effects)

p cow(log t0 ,log t_.)

Non-Mixture Full LFP Reduced LFP

Model Mixture Model Mixture Model

552.237 549.683 550.635

559.237 558.683 557.635

4.622 (0.491)

--0.885 (0.347)

-0.242 (0. !22)

-0.892 (0.149)

-i .354 (0.350)

1.299 (0.120)

3.586 (0.502)

-0.491 (0.364)

0.047 (0. !46)

--0.840 (0.143)

-1.271 (0.336)

!.064 (0.143)

3.376 (0.403)

-0.864 (0.144)

-1.359 (0.332)

1.121 (0.132)

1.081 (0.161)

0.409 (0.15 I)

1.448 (0.839) 1.906 (0.917)

1.306 (0.593) 1.416 (0.717)

1.017 (0.150)

0.477 (0.159)

!.032 (0. i 5O)

0.459 (0.157)

Certain physical characteristics may make a person immune to experiencing Grade IV VGE. The
variables SEX and S.AGE are suitable for modeling the probability of immunity. The explanatory

variables S._Tp__360an d NOADYN are likely only to influence the onset time of Grade IV VGE. Thus,

although we only consider SEX and S.AGE for the mixture portion: of any LIP models, we consider all
four variables for inclusion in the location portion of an LFP model. Despite slight evidence in Tables 2a-

d of possible interactions among covariates, we did not consider interactions among covariates in this

report.

The first LFP model represented in Table 3 (called the full LFP mixture model) describes log survival

time as depending on all four of the explanatory' variables. It also models the cure rate as depending on
two explanatory' variables: SEX and &AGE. The second L_ model (the reduced LFP mixture model)

describes log survival time as depending on two of the explanatory variables: S.TR360 and NOADYN.
It further models the cure rate as depending on two explanatory variables: SEX and S.AGE. Other

configurations were tried, but none was uniformly better in terms of fit and accuracy of predictions.

Judging from the values of Aikaike s Informatio n Criterion (AIC) in Table 3, the reduced LIP model
appears to be a better fit than either the non-mixture or the full model. In addition, two of the location:

parameter estimates in the full model (SEX and S.AGE) are much less than twice their standard errors,
indicating that these two variables are insignificant location parameters in the model.

Before we discuss additional assessments of model fit and predictive accuracy, we will present a brief

interpretation of the meaning of the parameter estimates within each model.

Z--
S
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Interpretation of the parameter estimates

Negative location parameter estimates for a given explanatory variable imply that for two observations

differing by one unit in the variable, the expected log time to onset of Grade IV bubbles decreases by the
estimate given. According to the non-mixture model, for a male versus a female, the expected onset time
is 0.885 log minutes sooner. Similarly, for two individuals who differ by one standard deviation in AGE

(approximately 7 years), the expected time to onset is 0.242 log minutes sooner for the older individual.
The remaining parameter estimates are interpreted similarly. For the reduced LFP model in Table 3, the

location parameter estimates share the same direction as those for the non-mixture model. In addition, for
a male versus a female, the expected log odds of the probability of eventually experiencing Grade IV

VGE is !.906 higher. For two individuals who differ by one standard deviation in AGE, the expected log

odds are increased by 1.416 for the older individual. Both of these imply that younger females are most

likely to be immune to Grade IV VGE, and older males are least likely to be immune to Grade IV VGE,
at least within the age range we modeled.

Two sources of variability are estimated for each model given in Table 3. The parameter ¢yb describes

variability between individuals, and the parameter cy describes variability from a measurement error

not associated with between-individual variability. A relatively high estimate for _h as compared to its

standard error may imply strong heterogeneity among individuals. An acceptable rule of thumb to apply

in this case is that if the estimate of c_h is greater than twice its standard error, there is evidence of

significant heterogeneity among individuals. Table 3 shows that the estimates for ¢_h are much greater

than twice their respective standard errors. Heterogeneity may result from idiosyncratic differences

among individuals or from differences associated with one or more covariates that were not modeled.

The relatively high estimate for <Yh results in moderate estimates of correlation between two log

responses on the same subject.

Also, the estimates of G j, for both models are comparable to those of _ . One reason for this may be

due to the small number of tests contributed by most subjects. In tCact,42% of the 238 subjects contributed

only one record, 30% contributed two records, and less than 5% contributed more than six records. Thus,
much of the variability in log event times is due to variability among individuals.

Next we will discuss goodness of fit and predictive accuracy of the two models represented in Table 3.

6. Goodness of Fit of Two Models for Onset Time of Grade IV VGE

Goodness of fit of parametric models with interval censoring is not easy to check, particularly when the

recorded intervals are not fixed across subjects. Therefore, standard test procedures that use the prediction

of the percentages of events within certain time intervals are not useful. In addition, if the covariates are
continuous, we may not be able to assess goodness of fit well by dividing the data into groups according

to the values on the covariates, and then comparing the nonparametric survival estimates to the predicted
survival curves. Also, with a high percentage of fight-censored observations, it is difficult to get enough

interval-censored data within some of the groups.

In addition, residual plots are complicated due to the difficulty in, first, defining a residual for interval-

censored data, and, second, deterrnining its sampling distribution under the hypothesis that a model is

correct. So, instead we describe a graphical goodness-of-fit approach that is useful in evaluating the
model fits.
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6.1 Goodness of Fit Using a Graphical Method

The graphical approach we used involved a parametric bootstrap procedure. We bootstrapped interval-

and right-censored observations from each of the fitted models with point estimates in Table 3 and fixed
covariate patterns. Then, we calculated the Turnball estimate of the probability of Grade IV bubbles for

each bootstrapped sample and compared these Tumball curves to the data-based Tumball estimate and
95% simultaneous confidence bands (as we discussed in Section 3). The confidence bands describe the

uncertainty that is associated with the data-based Turnball estimate as an estimate of the actual or true
population-based curvel The population here might-be individuals in simulated hypobaric conditions. So,
to the extent that the confidence interval endpoints contain curves from the parametric bootstrap from a

particular model, that model may be said to describe the population well. Alternatively, if there is the

possibility (under 95% confidence) that the true population Tumball curve is located in areas where
there are no generated curves from a particular model, there is an unacceptably high chance that the data

did not originate from the same model. This reasoning assumes that the generated Turnball curves fill the

entire range of possible curves generated from the model in question.

To reflect the dependency in the data, the parametric bootstrap procedure generated a random effect for

each individual from a normal distribution with mean zero and variance equal to the point estimate of c_.

Repeated tests from a single subject all had the same random effect.

One hundred bootstrapped samples were drawn from each of the competing random effects models.

Details of the bootstrapping procedure are in Appendix B. After :around 50 samples were:analyzed, the

concentration of the resulting plotted Turnball estimates hardly changed. So, 100 samples were deemed

sufficient for graphical purposes. Figure 4 contains the resulting Turnball estimates of failure or
occurrence probabilities by time for the non-mixture model and the LFP models described in Table 3.

Each panel in the figure shows the 100 generated estimates for one of the models (the grayed lines),

superimposed with the original data-based curve based on the original data (the dark solid line) and
the simultaneous confidence bands (dotted dark lines). : : :

According to Figure 4, both LFP mixture models can generate Tumball nonparametric maximum
likelihood estimates that fall within the 95% confidence bands associated with the estimate computed

from the original data. If the actual population Tumball curve falls within the dark dotted line (with 95%
confidence), that curve is consistent with either LFP model. The patterns for the two LFP models are very

similar, except the full model displays more variability probably due to its two additional coefficients.

Also, the distributions of Turnball points at each hour for the reduced LFP model appear to be negatively
skewed. Thus, fewer generated datasets had many observations with infinite event times for the reduced
LFP model than for the full LFP model.

The plot containing the samples drawn from the non-mixture model shows that almost all the generated
curves are close to the "data-based curve and also fall within the 95%, simultaneous confidence bands on
the data-based Turuball curve. However, within the 95% confidence bands are areas that are outside of

the range of generated curves. This may be indicative of a poor model fit because the actual curve may
correspond to areas outside of the range of generated curves. Adding a mixture part to the model (as was
done in the full and reduced LFP models) ensures that this situation will not happen and that the actual

population curve (with 95% confidence) is within the range displayed by the generated curves from the
model. As we mentioned in a previous section, this conclusion assumes that the bootstrap has generated

curves to cover the entire range that the model in question would predict. The assumption seems to hold

true, at least approximately, even though there are only 100 generated curves because the difference in

the range between 50 and 100 generated curves was minimal.

18



¢.o

c5

to
c5

r"

t-- t'o

o (5
-12

o,,I

p
a.;

d

Full LFP Model

0 1 2 3 4 5 6

Hours

(D

O

to

c5

.o d
1E

Q-g
q
O

Reduced LFP Model

= =,

1 2 3 4 5 6

Hours

1.1_

1E

8_
e
13.

_o

to

d

d

_q
c5

d

c_

0 1

Non-mixture Model

__=

2 3 4 5 6

Hours
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confidence bands. The 100 grayed lines represent the Turnbali estimates based on 100 samples

from the respective fitted model.

A generated dataset with many immune observations has a nearly flat Tumball curve. The presence
of S.AGE in the mixture portion of the LFP models may cause some generated datasets to contain many

immune observations. The mixture coefficient on S.AGE is positive for both models, which implies that

with increasing age, the probability of experiencing Grade IV VGE eventually increases as well. The

majority of the S.AGE values were negative (slightly less than 60%), however, so age was below the

mean age of 31.85 years. A negative S.AGE decreases the estimated probability of eventually

experiencing Grade IV VGE. Generated datasets of onset times that have many negative
S.AGE values may have nearly flat Tumball estimates.

Based on the plots in Figure 4, it seems that our data more likely originated from a model similar to an
LFP mixture model than from the non-mixture model. Furthermore, as given in the next section, general

predictive accuracy based on the non-mixture model is not as good as prediction based on the LFP
mixture model.
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7. Predictive Accuracy of Models

To compare the predictive accuracy of the models, we used K-fold cross-validation. Briefly, cross-
validation consists of leaving out K subsets of observations in turn, fitting the model to the remaining

set of observations, then using the model to predict the values of the left-out subset. This process may

be repeated M times to get M different groupings of K subsets. Cross-validation corrects for much of the

positive bias that results from predicting observations when those observations are used to fit the model.
We used an additional bias adjustment that corrects another optimistic bias; the procedure is called K-

field Adjusted Ovss-validation. For details of the adjustment, see Davison and Hinkley (1997). We

detail the procedure for our application in Appendix C.

Predictions, conditional on the covariate values and censoring pattern, were obtained on log times
to Grade IV bubbles. Error in prediction was assessed via a squared distance from the nearest interval

endpoint if the predicted value fell outside of the recorded interval, and the error was zero otherwise.
Predictions do not consider repeated observations made on the same individual. For computation of

the predicted log time, see Appendix C.

The top half of Table 4 contains results for two values of K (K = !0, 548), the number of subsets that

partitioned the dataset. The choice K = 10 is recommended by the rule of thumb, K -- rain(10, ,q_Tn),
where n is the size of the data set (Davison and Hinkley, 1997). The choice K = 548 entails leaving out

each observation in turn. The table shows the results of the mean pred!ction error averaged over subsets

and over 100 repetitions (,for K=10 only). The size of each subset is labeled as m. The two values for K

give similar results and, thus, lead to the same conclusion: namely that the LFP model predicts better than
the non-mixture model on a new dataset from the same population. Other choices of K led to very similar

results as those seen in the table.

Table 4: Measure of Predictive Accuracy of Models

(K-fold Cross-Validated Prediction Error)

Number of Groups (Size

of Left-out group)
K = I0 (m = 55)
K = 548 (m= 1)

Sample size used to fit
model:

n=25

n=35

n=50

Non-mixture

Model

0.961

0.961

1.005

0.99 I

0.920

Full LFP
Mixture Model Mixture Model

Reduced LFP

0.532 0.596

0.532 0.594

0.751 0.636
0.698 0.636

0.636 0.593

The bottom half of Table 4 contains restdts to get an idea of the sample size for which overfitting

begins to display itself. We randomly selected a small number of observations (n = 25, 35, or 50) from the
dataset and fit each model using that set. A sample size of 50 might be considered sufficient, whereas a

sample size of 25 may not be sufficient. Then we computed the averaged prediction error using the left-
out cases. We repeated this procedure 100 times for each model and took the median of the resulting

prediction errors. (The median was used instead of the mean because of some very large prediction
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errors).Themedianisdisplayedin thetable.Asweexpected,predictiongenerallygetsbetterforall
modelsasthesamplesizeincreases.Butnotably,thenon-mixturemodelpredictspoorlycomparedto the
twoLFPmodelsforall samplesizes.In addition,thereducedLFPmodelappearstoperformslightly
betterthanthefull LFPmodel.

Wenotethatalthoughtheparameterestimatescanbeexpectedtochangeslightlywhenallof the
datapointsarenotusedtofit themodel,it ishopedthattheparameterestimatesdonotchangegrossly
foreachfitting,orelsethereis aproblemwithhighlyinfluentialpoints.Thatdidnotappeartobethecase
here,asregardsthefirst tworowsof Table4,whereasubstantialpartof thedatawasusedin thefitting.
However,thatisnotthecasewhenusingonly25or 35observations.Here,theparameterestimates
sometimeschangedwildly dueto differentpercentagesof right-censoring.So,thelastthreerowsof Table
4reallyassessthestabilityof thestructureof themodel,notnecessarilyof theparameterestimates.Even
with25observations,overfittingdoesnotappeartobeabigproblemfor anyof themodels,butpredictive
accuracyisagainmuchworseforthenon-mixturemodelversusthetwomixturemodels.

Thetwomixturemodelsareverycloseinpredictiveaccuracy.Eithermodelcouldbeusedforprediction,
givingsimilarresults.However,thereducedmodelhasaslightlybetterpredictiveaccuracyin thecaseof
thesmallsamplesize.It alsohasfewerparametersand,thus,asmallerAIC value. All of the coefficient
estimates of the reduced model exceed or come close to exceeding twice their standard errors. It is clear
that coefficients for SEX and S.AGE do not belong in the location portion of the full model because of

their magnitude relative to their standard errors. We will therefore use the reduced LFP for specific

predictions in the next section.

8. Further Evaluation of the LFP Model

Based on estimates from the reduced LFP Model in Table 3, the estimated probability of remaining free

from Grade IV bubbles by a given time, t, is

P(T >t)=P(-=I)S(t)+ P(: =O)(i) = P(z=l[x)(1-_(.l°gt--_(x) ll+P(z=Olx) (8.1)

where

ja(x) = 3.376- 0.864 STR360 - 1.359 NOADYN,

P(:=llx)-
exp(1.906 SEX + 1.416 S.AGE)

I +exp(! .906 SEX +1.416 S.AGE)

S.AGE = (AGE - 31.85)/7.17 , and STR360 -- (TR360- 1.57)/0.263.

The complement of (8. !), the probability of experiencing Grade IV bubbles by a given time, t, is

( Iogt-[t(x)
P(T <_t)=,P(:: I)(l- S(r)) = P(: = llx)¢,/ -- I. (8.2)

1.121 )

For calculating predictions, the random effect term, bi , that appears in (4.2) is not used. Equation (8.2) is

called the cumulative distribution function (CDF). Plots of (8.2) are shown in Figure 5 for several values
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of theexplanatoryvariables,alongwith95%point-wiseconfidenceintervalsthatwereobtainedassuming
asymptoticnormalityof thelogitof therespectiveestimatedprobabilitiesandthenback-transformingthe
resultingintervaltogetaconfidenceintervalontheprobabilityitself.Theconfidenceintervalsarenot
symmetric,buttheyarealwayscontainedwithin0 and1(MeekerandEscobar,1998).Theupperpoints
of theintervalsarerepresentedbydashedlines,andthelowerpointsarerepresentedbydottedlines.For
all fourplots,thehigherdashedlinesandthehigherdottedlinescorrespondtothehighersolidlines,
representingthepointestimaies,: _ :

Figures5aand5bcompareprobabilitiesbytimeataltitudeformalesandfemalesages27and40,
respectively(tocontrastyoungerandolderages),withatissueratioof !.5,andwhoarelowerbody
adynamic.Theages27and40yearswerechosentorepresentyoungerand olderbecauseof the
numbersof malesandfemalesatthoseagesin thedataset.Therewereninefemalesand39malesatage
27,andfivefemalesandsixmalesatage40.(Thenumberof femalesatanyagewaslessthan10.)

Accordingtothepredictions,maleshavehigherprobabilitiesof GradeIV bubblesthando females
at almostall hoursataltitude,butthedifferenceisveryslightforanageof 40.Theslightdifference
betweenthemaleandfemalecurvesatanageof40 (ascomparedtothelargerdifferenceatanageof 27)
iscausedbythemixtureprobabilityi_ing dominated by the exp0nentl_S.AGE times its coefficient,

when S.AGE increases to a large positive value. The standardization of 40 years is about 1.14, whereas

the standardization of 27 years is negative (-0.68). The same reason also explains the larger standard

errors when S.AGE is positive: that is, the expression for the standard error (at a given time) contains

the exponential of S.AGE times its coefficient. Also, there are more observations at age 27 (n = 48)

than there are at age 40 (n = 11).

Figures 5c and 5d compare predicted probabilities by age for different tissue ratios and adynamic

versus ambulatory individuals, respectively. For both graphs, only males are considered, staying a total
of six hours at altitude (i.e., time = 6 hours). For Figure 5c, the individual is considered to be lower body

adynamic. For Figure 5d, the individual has a tissue ratio of 1.5. For both plots, the probability estimates
increase with age, then flatten out as age increases beyond its mean in the dataset (about 32 years). Also,

at any age, the higher tissue ratios have higher estimated probabilities as do ambulatory individuals, with
tissue ratio held constant. The negative acceleration pattern that is seen in Figure 5d actually occurs for

ambulatory and adynamic individuals. The range of the vertical scale hides the pattern for the adynamic

curve. The same general pattern in the predictions occurred for other hours besides six hours.

Together, the panels in Figure 5 seem to predict interactions between age and the other variables in their
influence on probability of Grade IV VGE at a given time point. For example, the predicted difference in

probability of Grade IV VGE between an adynamic and ambulatory individual at time = 6 hours depends
on the age of the individual. It is greater at a higher age. Figure 5 may signal the need for an interaction

term in the model, although we do not explore this idea further here.

A comparison of Figure 5 with Figure 6, which has the analogous predictions from the non-mixture

model, shows mean predictions that are generally in the same direction, albeit somewhat larger overall.
There are several differences, however. First, when age is fixed at 40 years, the difference in the CDF for

males versus femaies for thenon-mixture model widens ataim0stali tlmepoints, as c0mpared to when

age is fixed at 27 years. Thisis in contrast to Figure 5, where the analogous graphs for the reduced LFP
model show a narrowing of the CDF when age is fixed at 40 years, as compared to when age is fixed at

27 years. The narrowing in Figure 5 is due to not having S.AGE or SEX in the location portion of the
model. Predictions from the full LFP model (not shown) show a slight widening as well, but not as much

as for the non-mixture model. The full model had S.AGE and SEX in both mixture and location portions.

When AGE begins to increase, both LFP models have mixture portions that are dominated by the S.AGE
term, and the mixture portion goes toward 1.0 for both sexes as S.AGE increases. For the reduced LFP

w

22



model,however,thelocationportionstaysfixedwhenS.AGEchanges,sotheCDFsformalesand
femalesgrowclosertogether.Forthefull LFPmodel,thelocationpartchangeswhenS.AGEandSEX
change,andthechangecompensatesforthemixtureportionsgoingtoward1.0,causingtheCDFsto
remainsubstantiallyapart.Thefull LFPmodelshowedsimilarpredictionsto Figures5cand5d.
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Figure 5. Estimated probabilities of Grade IV VGE, with 95% point-wise confidence intervals, as

predicted by the reduced LFP Model. Dashed lines are upper points of the intervals; dotted lines are the

lower points. The solid lines are point estimates.

23



8

u_ __

8

E o
--.1

O

(a)

fl

fs
f

,i f ,=, _"

I I I I I I

8
6

II _--. __

8

c::;

"5 o
E
"1

0 1 2 3 4 5 6 0

(b)

j//_"

/f

t / ,i

I I I I I

0 I 2 3 4 5 6

time at altitude (hours) time at altitude (hours)

=

o= (c) g (d)

"6 _ t" I _ -1 .'"
Jl_ JJ 8 C_

>= d >= . .
_ /-------- -,--_'-_ _--.--'-, "_ _1_ ..................
"_ g'-I -- : .... _'"=='==="==:J -2 c:;°C_ I I I I I I I I I I I

0 20 25 30 35 40 45 0 20 25 30 35 40 45

age of subject (years) age of subject (years)

Figure 6. Estimate d probabilities of Grade IV VGE, with 95% point-wise confidence intervals, as

predicted by the non-mixture model. Dashed lines are upper points of the intervals; dotted lines are

the lower points. The solid lines are means.

Differences in mean predictions across tissue ratio and adynamia status become increasingly larger

over age for the non-mixture model. Thus, for the non-mixture model we also see evidence of predicted

interaction between age and other explanatory variables. Howe)'er, in the dataset, the CDFs do not level
off after age increases past the mean.

Thus, in comparison with a non-mixture model, the LFP model predicts on average, somewhat smaller

probabilities of Grade IV VGE as judged by comparing the vertical axes across the two figures. The
differences in predictions across tissue ratios and adynamia status appear to increase over age, and then

stabilize as age increases beyond the mean of about 32 years; for the non-mixture model, the differences
continue to increase. The empirical proportions of Grade IV incidence by age categories and adynamia

r,

h
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status,asgivenpreviouslyinTable2d,didnotindicateanincreasinggapinGradeIV incidenceacross
adynamiastatusasageincreased.Empiricalproportions(notshown)ofGradeIV incidenceby ageand
TR360categoriesalsodidnotindicateincreasingdifferenceswhencomparingtissueratiosacrossage.
However,whethertheproportionsinTable2dareconsistentwith thestabilizingdifferencesseenin
Figures5cand5dishardtoinfer.

Figures5aand5bversusFigures6aand6bmakedifferentpredictionsregardingtheprobabilityof
GradeIV VGEovertimefor malesandfemalesatdifferentages(27and40years).Althoughthefigures
showonlytwoages,generallyasageincreases,thereducedLFPmodelpredictsthatmalesandfemales
haveincreasinglythesameCDF;thenon-mixturemodel,ontheotherhand,predictsthattheCDFsfor
malesandfemalesremaindifferentasageincreases.ThereducedLFPmodelpredictsthatwhenatissue
ratioisaround1.5,afteracertainage perhaps40years lowerbodyadynamicmalesandfemalesare
equallysusceptibletoGradeIV VGE.A comparison of the predicted CDFs to the empirical proportions

given in Table 2c appears to corroborate the predictions of the non-mixture model in that the difference in
Grade IV incidence for males versus females is higher for the 40 +60 age category than for the 19 +30

age category. However, the number of females beyond age 40 is relatively small. Also, the difference is
lower for the 30 +40 category, which would seem to support the reduced LFP model.

9. Discussion

We have fit two different types of models to the Grade IV VGE data: (I) a limited failure population

lognormal mixture model and (2) a traditional lognormal non-mixture model. The reduced LFP mixture
model appears to be a slightly better fit, as evidenced by its AIC value in Table 3 and the discussion of the
goodness-of-fit graphs in Figure 4. Also, the LFP mixture model gives more accurate predictions overall,
as seen in Table 4. However, a comparison of specific predictions in Figures 5 and 6 to cross-tabulations

in Table 2 (a-d) do not appear to overwhelmingly favor either the non-mixture or the LFP mixture model.

An alternative to the reduced LFP model is to use the full LFP model. This model had good predictive

accuracy and a good fit to the data. Moreover, the full model did not predict a narrowing difference in
probabilities of Grade IV VGE by time across ages 27 and 40 for males and females. However, according

to the asymptotic standard errors that we computed, the two extra parameters the model contained over

the reduced model were clearly not significantly different from zero.

In Figure 7, we show boxplots of the predicted probabilities of eventually experiencing Grade IV VGE

during an exposure for each of the two LFP models. The probabilities were computed for the covariate
combinations in the dataset and the estimates in Table 3 and in equation (5.2). The boxes contain the

middle 50% of the probabilities, and the horizontal lines with dots in the center represent the medians.
Within the whiskers are 95% of the data. The two boxplots are somewhat similar; indeed, they show

predictions almost anywhere between 0.20 and 1.0. However, the distribution of probabilities from the
reduced model contains the bulk of its values at a higher probability. So, the reduced model may be

more suitable for a population expected to contain few individuals immune to Grade IV VGE, where

immunity is determined largely based on age and sex.

As a predictive model, the reduced LFP model of Table 3 is the best of the models presently investigated
to predict the onset of Grade IV VGE in the population of volunteer subjects undergoing altitude chamber
tests. A third LFP was investigated that contained the same parameters as those of the reduced LFP, but it
also contained S.AGE in the location portion. The fitting of this third LFP model was almost identical to

that of the reduced LFP model.
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Figure 7. Boxplots of predicted probabilities of eventually experiencing Grade IV VGE
for two LFP models.

10. Limitations and Extensions

We have shown that a limited failure population model might suitably describe the onset of Grade 1V
VGE in volunteer subjects undergoing testing in altitude chambers. The reduced LFP mixture model that

is shown in Table 3 seems an appropriate candidate for prediction of onset time. This model is appropriate
in a situation where age affects the predisposition for Grade IV VGE, but does not influence its rate of
occurrence in a situation where Grade IV VGE will occur eventually. The general predictive ability of

a non-mixture for future observations similar to the current set of observations does not appear to be

as good as that of the LFP model we fit.

It is possible that other physical characteristics beside age and sex influence immunity to Grade IV =
VGE. One of these variables is body weight or body mass. Body mass was measured for individuals in

the current dataset, but a decision was made early by the original researchers not to include this variable

in their analysis because it had low predict-ive ability. Its inclusion in an LFP model may he[_ predictive

ability, however. It also may be necessary to look more closely at interactions among certain covariates,
such as TR360 and NOADYN, as well as AGE and SEX.: _

More flexible models mi_ght be considered. For example, _the generalized-F distribution, which contains
the log normal distribution as a special case, can be used (Peng et al,, i996). To apply this distribution to

interval-censored data may be practically quite complicated. A Bayesian approach might make the model

fitting easier. A Cox model with frailties is another alternative model. At least one study (Chhikara et al.,
2000) has shown the Superioriiy of the Cox model applied t0 onset of DCS, as opposed to parametric

models such as the log normal or log-logistic. Whether this superiority remains when there is also interval

censoring and dependent observations will be addressed in the future. We should note that a completely

.=
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non-parametricmodelmaynotbepossiblewehaveonly a few observed occurrences of Grade IV VGE in

the right tail of the survival distribution.

Finally, the dataset we analyzed in this study contained many right-censored observations. Although
the likelihood accounts for right-censoring, we did not specifically address the effect, if any, that heavy

censoring may have in our goodness-of-fit procedures. Since heavy right-censoring is common in data
obtained from altitude chamber tests (Koti et al., 1998; Chhikara et al., 2000; Conkin et al., 1998), this

is a potential concern and limitation in our analysis.
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Appendix A: Asymptotic Correlation Matrices for Fitted Models

Non-Mixture Model

[3o 13_(SEX) 132(S.AGE) [33(S.TR360) [34(NOADYN) log _y

_j 1.000

13_(SEX) -0.613 1.000

132(S.AGE) -0.207 0.150 1.000

_3 (S.TR360) -0.271 -0.001 0.022

_4 (NOADYN) -0.671 -0.047 0.11 !

log _ 0.350 -0.098 -0.069

log _ 0.350 -0.159 -0.112

1.000
0.159 1.000

-0.273 -0.130 1.000

-0.080 -0.179 -0.075

Reduced LFP Mixture Model

_ _l (SEX) R2 (S.AGE) [33(S.TR360)

13o 1.000

_L (SEX) 0.463 1.000

R2 (S.AGE) 0.295 0.810 1.000

133(S.TR360) -0.317 -0.077 -0.015 1.000
134(NOADYN) -0.824 -0.123 -0.126 0.140

log c 0.490 0.472 0.242 -0.268

log _b 0.310 0.149 0.102 -0.074

13._(NOADYN) log ¢_ log Ob

1.000

-0.155 1.000

-0.163 -0.O46

Full LFP Mixture Model

13o 13, a,
(SEX) (SEX) (S.AGE)

_ 1.000

13,(SEX) -0.426 1.000
c_l (SEX) 0.418 0.272 1.000

132(S.AGE) -0.365 0.016 -0.335 1.000

_2 (S.AGE) 0.194 0.162 0.727 0.085

(S.TR360) -0.258 -0.075 -0.149

(NOADYN) -0.653 -0.151 -0.257

log c 0.458 0.164 0.607

log Gb 0.361 -0.036 0.252

Cz2 133 13_ log
(S.AGE) (S.TR360) (NOADYN)

1.000

0.077 -0.037 1.000

0.140 -0.175 0.155

-0.309 0.290 -0.300

-0.169 0.107 -0.094

1.000

-0.249 1.000

-0.191 0.056

log _b

1.000

1.000

log _b

1.000 m

3O



Appendix B: Details of the Parametric Bootstrapping procedure

Let {czl..... of.4 } and {13,,, 131..... _4 } denote point estimates of the mixture and location parameters,

respectively, for the models studied. Note that some of these estimates will be zero. In particular, for the

non-mixture model all of {_ ..... Cz4} will be zero. Also, let cy and G b be point estimates of the scale

parameter and standard deviation of random effects (on the log scale), respectively.

For i = i to 238 subjects, and forj = 1 to n, tests, each with prescheduled time at altitude, ALTTIME,j and

recorded interval, ( t% t_ ]:

(I) Draw a random effect, /9, from a normal distribution with mean 0 and standard deviation, (Y_,.

(2) Divide the time axis from 0 to ALTTIMEij hours into alternating four-minute monitoring
intervals and 12-minute non-monitoring, or resting, intervals. This scheme reflects the intervals

of assessment designed in the study. (Naturally, not all time axes between 0 and ALTTIMEo divided

evenly into four- and 12-minute intervals. In cases where the time axis does not divide evently, we

truncated the ending interval to fit the time frame.)

(3) Using the values on the explanatory variables, %, with probability in (5.2), generate a random

variate, T,_, from a lognormal distribution with location parameter, lu : 13,,+ Z_:113kv,J _ ' and scale

parameter, _ = cr. Otherwise, let Tij = oo.

That is, use (5.2) to compute the estimated probability that the observation will eventually
experience Grade IV VGE. (For the non-mixture model, the probability is one.) With this probability,

the generated random variate comes from the indicated lognormal distribution. Otherwise, it is
infinite. Note that the set of covariates % used for location and mixture portions may differ.

(4) Simulate Type I right-censoring: If T,j < ALTT1ME,j, determine which interval T,j falls in by

comparing T,j with the divided time axis in (2). Record an interval for T_, using the following scheme:

(a) If T,j falls within a i 2-minute resting interval, record the 12 -minute interval; (b) if T,j falls within
a four-minute monitoring interval (not including the first four-minute interval), record the endpoints
of the 12-minute resting interval that comes immediately prior to the four-minute interval; (c) if Tij
falls within the first four-minute interval, record the interval from time zero to T_; and finally, (d) if

T,j > ALTTIME,_, or if T,_ falls within the final 12-minute interval (if there is a final t 2-minute
interval), call the observation Type I right-censored at ALTTIME_.

The interval scheme described in (2) above did not appear to greatly influence goodness-of-fit plots.

In fact, we tried many different schemes, including intervals of one fixed width, and the results were

virtually identical.

Note that we did not simulate random censoring, because none of our models accounted for the sparse

existence of random censoring in the data. These cases were instead treated as Type I censored.
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Appendix C: K-fold Adjusted Cross-Validation Procedure for GIV VGE models

We assessed the aggregate prediction error of each model using a K-fold cross-validation algorithm.

In general, K-fold cross-validation repeatedly splits the data into K disjoint sets of nearly equal size (say,
Ct,, Ck). These K sets define K different splits into training and test sets, with each set C in turn acting
as a test set and the remaining sets together acting as a training set. Prediction error is then calculated

once for each observation, and the average prediction error is obtained. This average is called the K-

foM o'oss-validation estimate of prediction error (e.g., Davison and Hinktey, 1997). A practical
rule of thumb is to take K = min(n _/2, 10).

A further adjustment corrects for a bias on the order of I/(K-I) in the K-fold cross-validation estimate of

prediction error. This adjustment adds a term that represents the resubstitution error minus the sum of the
averaged prediction errors resulting from using the model fit to each of the K subsets, in the proportion

each subset comprises in the data. The following steps may clarify the algorithm (see Davison and

Hinkley, 1997, p. 294-295 for full details).

Algorithm for K-fold Adjusted Cross-validation

(1) Fit the model to all cases { C= 1..... n = 548 }. Obtain predicted log times for the _ th case using

J k

la(x_ , F)=_gt_ = ._

l t_ j-I

with probability (P( z_ = I

otherwise

where 8, is defined in (5. I).

(2) Compute the averaged squared error using these predicted values,

tl

(=t

where

_I(x,F)}=[OI ( if logto < I.t(x,F)<logt Ic{logt,,
' Iog/l' min{I log/o -o<x,F)l, Ilog, I -[l(x, F)I}) 2 otherwise

(3) Divide the cases into K disjoint groups of sizes (approximate equal) m 1, , mK

For each k = 1,, K,

(4) Fit the model to all data except cases in the kth _oup.
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(5) Calculatepredictionsforall observationsusingthis model, and calculate

II

! = I

(6) Calculate the K-fold cross-validation estimate of prediction error:

K nl t

k=l i=1

(7) The adjusted estimate is

A ACV, K = m(_q.,K

K

+D(F,F)-2 m_ D(F,F _)
I1

k=l

(8) Repeat steps (3) through (7) M times, and average the prediction errors.

Note that in this algorithm, the predicted values are the log times to onset (which may be infinite), and
that the error in prediction is defined by the distance of the predicted value from the nearest endpoint of

the recorded interval, if the predicted value falls outside of the interval, and zero otherwise.
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ERRATA AND ADDITIONAL NOTES
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Laura A. Thompson*

Johnny Conkin**
Raj S. Chhikara*

Michael R. Powell***

*UHCL - School of Natural and Applied Sciences
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***NASA/Johnson Space Center

Errata:

p. 14, third paragraph: Change second sentence to: "A subject undergoing a test resulting in a right-censored
observation would have a probability..."

p. 15, beginning of Subsection 5.2: change first sentence to "We now fit two LFP random effects models..."

p. 17, first paragraph: Change all "minutes" to "hours". For example, "...the expected onset time is 0.885 log hours
sooner."

Additional Notes:

p. 17

The interpretation of the parameter estimates was done in terms of log hours. For the interpretation in terms of

relative change in onset time in hours for the level of the covariate coded as 1 versus the level coded as 0, use the
exponent of the coefficient. So, for example, for the non-mixture model the expected onset time for males (coded 1)

is exp(-0.885) = 0.41 (or 41%) of the onset time for females (coded 0). Similarly, for two individuals who differ by

one standard deviation in AGE, the expected time to onset for the older individual is exp(-0.242) = 0.79 (or 79%) of

the onset time for the younger individual. (The expected time to onset for the younger individual is exp(0.242) =
1.27 (or 127%) of the onset time for the older individual).

p. 21

"For calculating predictions, the random effect term, b i , that appears in (4.2) is not used." This statement means

that predictions were done for the average subject with values on the explanatory variables as indicated. That is,

predictions were calculated after setting bi = O.
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